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SUMMARY

This paper comprises an implementation of a fourth-order Runge–Kutta discontinuous Galerkin (RKDG4)
scheme for computing the open-channel flow equations. The main features of the proposed methodology
are simplicity and easiness in the implementation, which may be of possible interest to water resources
numerical modellers. A version of the RKDG4 is blended with the Roe Riemann solver, an adaptive
high-order slope limiting procedure, and high-order source terms approximations. A comparison of the
performance of the proposed method with lower-order RKDG models is performed showing a benefit
of considering the RKDG4 model. The scheme is applied to computerize the Saint Venant system by
considering benchmark tests that have exact solutions. Finally, numerical results are illustrated discussing
the performance of the proposed high-order model. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past few decades, considerable attentions have been paid to the development of numerical
algorithms capable of achieving optimal performance for solving flow problems in computational
fluid dynamics [1–4]. In the context of shallow water dynamics, finite difference, finite volume
(FV), and finite element (FE) numerics have become very popular. Most discrete formulations for
the set of shallow water equations [5, 6] are reflections of high-resolution schemes originally devised
to solve high-speed compressible flows and have been successfully employed in the simulation of
flows including the presence of shock waves, such as breaking dams or hydraulic jumps, almost
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invariably neglecting viscous and turbulent effects. For an informal overview, we refer the reader
to the recent papers of van Leer [7] and Toro and Garcı́a-Navarro [8].

In recent years, research on reliable numerical models, of first or higher order, for solving
hyperbolic partial differential equations (PDEs) is still growing and becoming difficult to follow.
Burguete and Garcı́a-Navarro [9] pioneered a new approach for constructing high-resolution total
variation diminishing (TVD) schemes through considering applications to shallow water flows.
Hsu and Yeh [10] built an iterative explicit scheme suitable for solving 1D unsteady open-channel
flow problems based on the Saint Venant equations. Delis and Katsaounis [11] incorporated the
source term vector into the IMEX implicit–explicit relaxation model. Črnjarić-Žic et al. [12]
extended the finite volume weighted essentially non-oscillatory (WENO) schemes and central
WENO schemes, by particularly considering open-channel flow benchmarks. Liang et al. [13]
put the focus on a high-resolution numerical model of shallow flow hydrodynamics based on
dynamically adaptive quadtree grids. Crossely and Wright [14] presented local time stepping
strategies to simulate 1D unsteady water flows. Murillo et al. [15] empowered an extension of the
first-order explicit upwind scheme to Courant–Friedrichs–Lewy (CFL) [16] values greater than 1.
Very recently, Mohammadian et al. [17] carried forward an extension to the non-conservative
method of characteristics (MOC). By using a proper interpolation function, the MOC scheme is
rendered conservative and can handle challenging tests for the 1D open-channel flow (dam-break
type, transcritical flows). Vignoli et al. [18] enabled the construction of Arbitrary (very) high-order
schemes using DERivatives (ADER) schemes for solving the 1D shallow water equations with
variable bed elevation. The cornerstone of this recent approach is the solution of the derivative
Riemann problem [19], which is a generalization to the Riemann problem firstly introduced by
Godunov [3, 20].

Very high-order methods are the next generation of numerical schemes to be used in shallow
water type flow and related problems. Classically, the concept of high-order methods is most
frequently used in the literature to formally reference second-order methods [1–3, 9]. However, the
development of higher than second-order methods has a widespread applicability. Various numerical
modellers have reported that first-order and even second-order upwind schemes, despite providing
excellent results in the case of discontinuous flow, exhibit excessive numerical dissipation when
applied to more general flows (not necessary including a bore propagation). On the other hand,
smooth regions of the spatial domain may be most economically approximated using relatively
high-order methods. It is broadly recognized that the higher the accuracy order of a numerical
model, the lesser the number of computational cells required to achieve a desired fixed level of
accuracy [21].

The first-order Godunov [20] and Lax-Friedrich [22] schemes are, respectively, the forerunners
of the large class of upwind and central high-resolution FV schemes. However, a cell average
of a solution in a cell contains very little information. In order to obtain higher-order accu-
racy, neighboring cells’ averages must be used to reconstruct an approximate polynomial solution
in each cell. The development of high-order Godunov-type [7, 8] FV methods, because of the
absence of an underlying spatial approximation framework, which stems from the inherent piece-
wise constant representation, is certainly the most challenging algorithmic issue for researchers,
since the construction of high-order polynomials requires the evaluations of high-order derivatives
of the field variables from scattered pointwise information. As a result, most traditional TVD
[1–3, 9, 11, 13, 14, 23, 24] schemes are at best second-order where a reconstruction of fluxes and
gradients is frequently required. We also mention here the notable example of the high-resolution
FV upwind flux-corrected transport, monotone upstream-centered schemes for conservation laws,
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piecewise parabolic method, essentially non-oscillatory, and WENO [23, 25–33] and this list is far
from being complete.

Unlike FVmodels, the intrinsic advantage of a discontinuous Galerkin (DG) spatial discretization
approach [34, 35] lies in their locality. A DG approach stores and evolves every polynomial
coefficient in a cell over time. Therefore, there is no need to use information in non-local cells to
achieve high-order accuracy. In addition, the DG approach conserves the Godunov-type methods’
features through the use of the Riemann problem [2, 36–38] solution (in the computation of the
intercell flux) and the involvement of slope limiters [28, 32, 39, 40] to avoid spurious oscillations
in the vicinity of strong shocks. In point of fact, the first-order DG method boils down to the
original Godunov upwind scheme [20]. Moreover, high-order DG approximations can deliver faster
convergence rates than high-order FV reconstructions and, hence, have the advantage of achieving
the same error magnitude as FV methods with less CPU time cost [21, 41]. Nonetheless, the price
one has to pay is the memory requirements, because the more we increase the order of a DG
approximation, the more the number of degrees of freedoms, to compute an approximate solution,
will locally increase.

The basic idea of Cockburn et al. [34, 35] was a simple yet elegant one. The investigators used a
DG discretization in space along with the TVD preserving Runge–Kutta (RK) time integration from
Shu and Osher [31] to arrive at a methodology called Runge–Kutta discontinuous Galerkin (RKDG),
which since its introduction by Reed and Hill [42] has experienced a vigorous development in
wide fields of hyperbolic PDEs [43]. Some of the illuminating profits of dealing with the RKDG
technique are (i) it increases the degree of approximating polynomial locally and thus can readily
support h- and p-adaptation strategies [44] and (ii) it communicates each element data with its
immediate neighbors only, regardless of the order of accuracy, thus allowing an easiness in the
external boundary condition treatment as well as to efficient parallel implementations [39]. The
list of new developments in DG methods is growing and far from being complete, we mention
here the remarkable work of Liu et al. [45] who introduced a central type [24, 46] DG scheme
that avoids solving the Riemann problems across boundaries and the work of Dumbser and Munz
[47, 48] who built an ADER approach using DG approximations for a very high-order model.

Primordial applications of the DG method to the conservative form of the Saint Venant system
[43, 49] were implemented with the Harten Lax and van Leer (HLL) Riemann solver [38]. Recently,
Xing and Shu [50] have extended high-order FV-WENO and FE-RKDG schemes, both implemented
with the simplest and inexpensive local Lax Friedrich (LLF) [22] Riemann solver, to particularly
solve the shallow water equations. However, this Riemann solver is an ideal choice to be employed
within RKDG methods for simulating shallow water flows when the model merely considers
frictionless and horizontal channel flows [36]. The two articles of Ambati and Bokhove [51, 52]
are among the very few papers that deal with DG methods over dry beds [53, 54]. In their work, the
authors presented a second-order DG space–time FE discretization combined with an improvement
to the HLLC [4] flux. Space-time elements separate accurately the wet and dry sub-domains
by moving the mesh accurately in a transient manner. Newly, Castro and Toro [55] reported
an ADER very high-order approach for the shallow water equations in the framework of DG
methods. In addition, Kesserwani et al. [56] reported the application of a second-order RKDG
model (RKDG2) to the full conservative form of the Saint Venant system. The algorithm proved
to be effective compared with a traditional TVD-FV model implemented with the same properties
as RKDG2, i.e. second-order accuracy, Roe Riemann solver, and straightforward approximations
of the source terms integrals. Nevertheless, the proposed model was elaborated for second-order
accuracy achievements in space and time.
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We believe that detailing a practical implementation of high-order RKDG models is an issue
of feasible interest to open-channel flows modellers. Consequently, we survey a practical high-
order RKDG formulation for the computation of hyperbolic conservation laws, particularly the
shallow water equations. The scheme is formally fourth-order accurate (RKDG4) with constant,
linear, parabolic, and cubic basis functions, representing the cell average and its corresponding
high-order slopes of the flow variables in each element. The algorithm was designed in conjunction
with the Roe Riemann solver [37] inducted with an entropy fix (so that the method is able to
handle transcritical flow transitions without generating forged discontinuous shocks), an adaptive
slope limiting procedure (so that the limiting procedure is applied only where it is needed), and
high-order approximations of the source terms components. We next advocate the advantages of
using the RKDG4 method by comparing its performance with the RKDG2 model [56] discussing
the issues of error magnitudes and CPU time cost. Then, we aim at computing, using the RKDG4
method, traditional flow problems with/without source terms effects for a more detailed numerical
verification.

This paper is organized as follows. In Section 2, we sketch the 1D open-channel flow mathemat-
ical model. Section 3 describes the practical formulation of the RKDG4 scheme. Section 4 exhibits
the numerical performance of the proposed RKDG4 via steady and transient benchmark tests.

2. OPEN-CHANNEL FLOW EQUATIONS

The shallow water, or the Saint Venant, equations [5, 6] are accepted for many practical applications
as a proper model of unsteady flow of water in 1D space dimension. The equations express the
physical conservation principles of mass and momentum. Assuming a gently varying topography,
this mathematical model describes the wetted cross-sectional area A(x, t) and the flow discharge
Q(x, t) variations in the direction parallel to the bottom (x denotes a coordinate in the horizontal
direction and t denotes the time). Based on the hydrostatic pressure distribution and incompressible
flow assumptions, the 1D unsteady Saint Venant equations are described as

At +Qx =0

Qt +(Q2/A+gI1)x =gA(S0−Sf)+gI2
(1)

where g is the gravity constant, S0=−�z/�x is the bed slope (z(x) represents the bed elevation),
and Sf stands for friction forces, with Sf associated with wall friction and may be defined by
an empirical law [5, 6] in terms of Manning’s roughness coefficient (denoted by n). I1 and I2
are integral terms accounting for pressure forces (hydrostatic-pressure and wall-pressure terms,
respectively). In the particular case of a symmetrical trapezoidal cross section, I1=bh2/2+SLh3/3
and I2=�I1/�x |h=constant, where h(x, t) describes the height of water, b(x) the width of the
channel’s bottom, b′(x) its derivative, and SL the channel’s side slope [57], which is null in the
case of a rectangular cross section.

Recently developed research codes [8, 9, 11, 12, 14, 15, 17, 56] are based on the conservative
formulation of this set of hyperbolic PDE, namely

Ut +F(U )x =G (2)

where U =[A Q]T designates the flow vector, F(U )=[Q Q2/A+gI1]T the flux vector, and
G(U )=[0 gA(S0−Sf)+gI2]T the source term vector.
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By using the Jacobian matrix of the flux (J =�F/�U ) with respect to the flow vector,
Equation (2) can be further expressed in a quasi-linear form as

Ut + JUx =G (3)

J has two real eigenvalues a1,2=u±c, where c=√
gh(b+hSL)/(b+2hSL) designates the wave

celerity. Moreover, the hyperbolic nature of the equation ensures that matrix J has a complete set
of independent and real eigenvectors e1,2=[1 a1,2]T.

In the cases of non-prismatic channels, the total derivative of the flux vector involves, in addition
to the partial derivative with respect to the conserved variable (JUx ), a partial derivative with respect
to the space variation �F/�x . Therefore, the supplementary partial derivative has been moved to
the right-hand side of Equation (2), and the source term vector is redefined as G=G−�F/�x
allowing the passage to an associated non-conservative form (see [8, 9, 58]).

3. HIGH-ORDER RKDG4 MODEL

This section describes the construction and implementation of high-order RKDG methods
up to fourth order in space and time for, particularly, the 1D shallow water equations. We
present the implementation of the RKDG4 scheme such that lowest-order models may be easily
deducted. The computational interval is divided into N uniform cells with boundary points
0= x1/2<x3/2<· · ·<xN+1/2= L . The points xi =(xi+1/2+xi−1/2)/2 are the centers of the cells
Ii =[xi−1/2, xi+1/2] and �x= xi+1/2−xi−1/2 the cell’s size, which is assumed to be uniform.
The proposed discretization is considered according to the approach of Cockburn and Shu [34].
We seek a local approximation Uh=[Ah Qh]T to U such that, for each time step t ∈[0,T ], Uh
belongs to the finite-dimensional space Pk(Ii ) of polynomial in Ii of degree at most k (achieving
(k+1)th-order accuracy in space). Hence, system (2) is multiplied by an arbitrary smooth function
�h and integrated over Ii . Subsequently, the flux term is integrated by part to obtain the following
weak formulation:∫

Ii
�tUh�h dx−

∫
Ii
F(Uh)�x�h dx+[F(Uh)�h]i+1/2−[F(Uh)�h]i−1/2=

∫
Ii
G(Uh)�h dx (4)

With the aim of decoupling the system, we adopt the Legender polynomials (Pl ) as the local basis
functions to obtain a diagonal mass matrix. Similarly, in the standard DGwe select�i

l (x)= Pl(2(x−
xi )/�x) as a test function �h. Since the interest is to design a fourth-order space accuracy scheme,
the method was set up for k=3, corresponding to piecewise cubic approximations. Therefore, four
basis functions {�i

0(x),�
i
1(x),�

i
2(x),�

i
3(x)} are needed:

∥∥∥∥∥∥∥∥∥∥∥

�i
0(x)=1

�i
1(x)=2(x−xi )/�x

�i
2(x)=6(x−xi )

2/�x2−1/2

�i
3(x)=20(x−xi )

3/�x3−3(x−xi )/�x

(5)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1389–1409
DOI: 10.1002/fld



1394 G. KESSERWANI ET AL.

and, accordingly, the approximation of the solution Uh(x, t) over each cell Ii is expressed as

Uh(x, t)=
k∑

l=0
Ul
i (t)�

i
l (x) ∀x ∈ Ii (6)

At each time step, one has to solve for the expansion coefficients U 0
i (t), U 1

i (t), U 2
i (t), and U 3

i (t)
of the FE approximation, going from the initial condition (U (x,0)=U0(x)) projections, which are
defined [34] by

Ul
i (0)=(2l+1)/�x

∫
Ii
U0(x)�

i
l (x)dx, l=0,1, . . . ,k (7)

and, for the degrees of freedom update, one has to proceed as follows

dUl
i /dt= Lh(Uh) for l=0,1,2, . . . ,k (8)

with

Ll(Uh) = −(2l+1)/�x

[
F̃(U−

i+1/2,U
+
i+1/2)−(−1)l F̃(U−

i−1/2,U
+
i−1/2)

−
∫ xi+1/2

xi−1/2

F(Uh)(�
i
l (x))x dx−

∫ xi+1/2

xi−1/2

G(Uh)�
i
l (x)dx

]
(9)

U±
i+1/2=Uh(x

±
i+1/2, t) are the left and right limits of the discontinuous solution Uh at the cell’s

interface and F̃(UL,UR) is a numerical flux function based on Roe’s [37] numerical flux function
taking the following form

F̃(U−,U+)=0.5

[
F(U−)+F(U+)−

2∑
p=1

�p
int|ã p

int|ẽ pint
]

(10)

where the subscript ‘int’ designates the intermediate state between the left and right states. Once the
Roe average velocity and celerity (ũint, c̃int) are found, the mean eigenvalues ã p

int and eigenvector
ẽ pint are found. An average of pth waves strength �p

int is found by an explicit formula involving
U−, U+, ũint, and c̃int (see [14] for clear-cut formulations). Moreover, to avoid having unphysical
expansion shocks in the solution [3], the absolute eigenvalues are modified using an entropy fix,
namely

|ã p
int|∗ =

{|ã p
int| if |ã p

int|��p

(ã p
int)

2/(2�p)+�p/2 if |ã p
int|<�p

(11)

where

�p =min[c̃int,max(0,2((a p)+−(a p)−))] (12)

To avoid the Gibbs phenomenon in the vicinity of strong shocks, we replaceU±
i±1/2 by the interfacial

values of each slope limited [3] cell’s approximation (denoted by Û±
i±1/2). As we are dealing

with high-order piecewise approximations, an adaptive limiting action (explicitly described) is
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performed by the use of the generalized minmod limiter function [28]. It is important both to start
limiting from the highest coefficient and to stop when the first coefficient that does not need to
be limited is reached. By this means the limiter is applied only where it is needed and retains an
order as high as possible and does not automatically reduce to first order. A general comprehensive
framework of the moment limiter [39] was recently described by Krivodonova [40]. The limiter
is used in the following manner

SET l=k

Limit Ul
i by replacing it by Û l

i =minmod((2l−1)Ul
i ,U

l−1
i+1 −Ul−1

i ,Ul−1
i −Ul−1

i−1 )/(2l−1)

If Û l
i =Ul

i

STOP; Û∓
i±1/2=

l∑
s=0

(±1)sUs
i +

k∑
s=l+1

(±1)sÛ s
i

OTHERWISE

replace l= l−1;
continue until l=1

In treatment of integral terms of Equations (7) and (9), we used quadrature rules. Here k is the
aforementioned order of the approximating polynomial. For Gaussian rules, one requires (k+1)-
nodes to conserve the accuracy order of the full method. This means that for l=0,1,2, . . .,k it
suffices to use the (l+1)-points Gaussian rules, respectively.

For k=3, the initial condition projections and the DG space operators are manipulated to be

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

U 0
i (0) = Ūi =U0(xi )

U 1
i (0) = √

3/2[U0(xi +�x
√
3/6)−U0(xi −�x

√
3/6)]

U 2
i (0) = 5/9[U0(xi −�x

√
15/10)−2U0(xi )+U0(xi +�x

√
15/10)]

U 3
i (0) = 7{��(20�2−3)[U0(xi +��x)−U0(xi −��x)]

+�′�′(20�′2−3)[U0(xi +�′�x)−U0(xi −�′�x)]}

(13)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

L0(U
0,U 1,U 2,U 3) = −1/�x[F̃i+1/2− F̃i−1/2−S0i ]

L1(U
0,U 1,U 2,U 3) = −3/�x[F̃i+1/2+ F̃i−1/2−F(U 0

i −U 1
i /

√
3)−F(U 0

i +U 1
i /

√
3)−S1i ]

L2(U
0,U 1,U 2,U 3) = −5/�x{F̃i+1/2− F̃i−1/2−

√
15/3[F(U 0

i +U 1
i

√
15/5+2U 2

i /5)

−F(U 0
i −U 1

i

√
15/5+2U 2

i /5)]−S2i }
L3(U

0,U 1,U 2,U 3) = −7/�x{F̃i+1/2+ F̃i−1/2−3�(20�2−1)[F(Uh(xi +��x))

−F(Uh(xi −��x))]−3�′(20�′2−1)[F(Uh(xi +�′�x))

−F(Uh(xi −�′�x))]−S3i }

(14)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1389–1409
DOI: 10.1002/fld



1396 G. KESSERWANI ET AL.

where F̃i±1/2= F̃(Û−
i±1/2,Û

+
i±1/2), Uh(xi ±��x)=U 0

i ±2�U 1
i +(6�2−1/2)U 2

i ±�(20�2−3)U 3
i ,

�=1/2
√

(15+2
√
30)/35, �′ =1/2

√
(15−2

√
30)/35, �=1/4−√

30/72, and �′ =1/4+√
30/72.

Sli (l=0,1,2,3) designate the (l+1)th-order source term vector approximations, which are
given by ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

S0i = G(U 0
i )

S1i = �x
√
3/6[G(U 0

i +U 1
i /

√
3)−G(U 0

i −U 1
i /

√
3)]

S2i = 5/18[(3√15/5−�x/2)G(U 0
i +U 1

i

√
15/5+2U 2

i /5)

−(3
√
15/5+�x/2)G(U 0

i −U 1
i

√
15/5+2U 2

i /5)]
S3i = �x{��(20�2−1)[G(Uh(xi +��x))−G(Uh(xi −��x))]

+{�′�′(20�′2−1)[G(Uh(xi +�′�x))−G(Uh(xi −�′�x))]}

(15)

As a final point, fourth-order accuracy in time is enhanced, to the fourth space order semi-
discrete scheme (14), by a four-step nonlinearly stable RK time marching with a CFL [16] number
equal to 0.145 for stability requirements [34]. Thus, the updating of the degrees of freedom is
performed∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(U 0,1,2,3)int1=(U 0,1,2,3)n+�t L0,1,2,3((U
0)n, (U 1)n, (U 2)n, (U 3)n)

(U 0,1,2,3)int2=(U 0,1,2,3)n+�t/2L0,1,2,3((U
0)int1, (U 1)int1, (U 2)int1, (U 3)int1)

(U 0,1,2,3)int3=(U 0,1,2,3)n+�t/2L0,1,2,3((U
0)int2, (U 1)int2, (U 2)int2, (U 3)int2)

(U 0,1,2,3)n+1=1/3[−(U 0,1,2,3)n+(U 0,1,2,3)int1−2(U 0,1,2,3)int2+(U 0,1,2,3)int3]
+�t/6L0,1,2,3((U

0)int3, (U 1)int3, (U 2)int3, (U 3)int3)

(16)

Remark
The RKDG3 model is obtained by removing the variable U 3(t) from the previous formulas
(Equations (13) and (14)) and by considering the DG space operators up to second-order (i.e. L0,
L1, and L2). Regarding the time discretization, we used a three-step RK stepping with a CFL
number equal to 0.209 as follows∥∥∥∥∥∥∥∥∥

(U 0,1,2)int1=(U 0,1,2)n+�t L0,1,2((U
0)n, (U 1)n, (U 2)n)

(U 0,1,2)int2=3/4(U 0,1,2)n+1/4(U 0,1,2)int1+�t/4L0,1,2((U
0)int1, (U 1)int1, (U 2)int1)

(U 0,1,2)n+1=1/3(U 0,1,2)n+2/3(U 0,1,2)int2+2�t/3L0,1,2((U
0)int2, (U 1)int2, (U 2)int2)

(17)

4. NUMERICAL TESTS AND RESUTLS

This section analyzes the performance of the described RKDG4 scheme implementation for the
simulation of hyperbolic conservation laws, particularly the shallow water equations. We first
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survey a comparison of the RKDG2 model [56] with higher-order models to shift an emphasis of
considering the RKDG4 method. We next illustrate the RKDG4 numerical approximation results,
when applied to the shallow water equations, by means of steady and transient benchmarks with
reference solutions that are used to verify the functioning of the proposed scheme.

4.1. Comparison between the RKDG4 model and lower-order models

4.1.1. Transient Burger’s equation. We solve, for this test, the inviscid nonlinear Burger’s equation
ut +(u2/2)x =0. Aiming for an understandable representation of the DG polynomial approxima-
tions structure, we firstly consider a case with transitive boundary conditions and a domain [0,100]
with an initial condition leading to a left depression wave and a right shock wave propagations
[3]. It is given as follows

u0(x)=
{−0.5 if 32.5�x�77.5

2 otherwise
(18)

This profile is convected till T =15s and the linear, parabolic, and cubic approximations corre-
sponding to the RKDG2, RKDG3, and RKDG4 models are, respectively, shown in Figure 1.
However, in all next numerical tests, only the mean value of the polynomial approximation over
each cell will be considered and plotted against an analytical value.

The second case surveys a quantitative comparison between high-order RKDG methods. The
smooth initial condition u0(x)=0.25+0.5sin(�(2x−1)) is considered on the domain [0,1]. Peri-
odic boundary conditions are used and the simulation is stopped at a time of T =0.05s before
which the compression wave becomes a shock. At a first sight (Figure 2), the advantage of using
the RKDG4 model is flagrantly noticed from the magnified left portion of the sine wave. It reflects
the usefulness of the RKDG4 model for achieving a better agreement with the exact solution,
by using less computational cells, than the RKDG2 scheme. Figure 3 is a plot of the errors with
respect to the number of computational cells, while Table I lists quantitatively the errors achieved,
respectively, by the RKDG2, RKDG3, and RKDG4 models. The way in which the errors are
evaluated is

Error= 1

N

∑N
i=1 |u(xi )−(u0i )

n|∑N
i=1 |u(xi )|

(19)

By this means, we note that in terms of CPU time cost the RKDG4 model is almost twice as
costly as the RKDG2 model for the same mesh, since two more DG operators are involved for
RKDG4 instead of two for RKDG2. On the other hand, the RKDG4 model has generated half the
number of the errors that are produced by the RKDG2 scheme, which points up an economical
practicability of RKDG4. However, it is worth stressing that if one wants to refine the number of
computational cells to more than N =52, no serious qualitative difference are noted between the
RKDG2 model and higher-order models. Thus, next we present a similar comparison on the Saint
Venant system with source terms for N =52.

4.1.2. Steady subcritical flow in a trapezoidal conduit. MacDonald [57] and MacDonald et al.
[59] proposed a series of open-channel flow test cases with analytical solutions. In all of them,
sloping bed and friction force are considered. Given a constant discharge, a Manning coefficient,
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Figure 1. Numerical solutions of the Burger’s equation by means of high-order RKDG
methods going from a discontinuous initial condition.

and the channel width together with an analytical water depth function, the bed slope is found
from the momentum equation of the steady Saint Venant equations

S0=
[
1− Q2(b+2hSL)

g(b+hSL)3h3

]
h′+ Q2n2(b+2h

√
1+SL)4/3

[(b+hSL)h]10/3 − Q2hb′

g(b+hSL)3h3
(20)

The example used herein consists of a trapezoidal channel of width b=10m, lateral slope SL=2,
and length L=5000m with a bed material characterized by a friction Manning coefficient of
n=0.03 (SI units) and a steady flow discharge of Q=20m3/s. The free surface, bed and crit-
ical level profiles are shown in Figure 4(b), where the analytical steady-state water depth is
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Figure 2. Numerical solutions compared with the exact solution of the Burger’s equation
going from a smooth initial condition and simulated with high-order RKDG models:

(a) N =13; (b) N =26; and (c) N =52.

given by

h(x)=9/8+0.25sin(�x/500) (21)

The depth solution corresponds to a wholly smooth sinusoidal flow in the channel. The numerical
unsteady model is given steady boundary conditions to obtain finally a numerical steady-state
solution and compared with the analytical solution (21). Owing to the subcritical nature of the flow,
one physical boundary condition has to be enforced at, each, the upstream boundary (Q=20m3/s)
and the downstream boundary (h=1.1250m) completed by a numerical boundary condition [58].
N =52 computational cells are used for the interval discretization and Figure 5 shows the corre-
sponding numerical depth profiles achieved by the RKDG4 model together with a magnified portion
comparing the results of the RKDG2 model with higher-order models. It can be seen that, if one
desires to deal with small number of computational cells, the RKDG4 model is able to provide
a better agreement with the analytical solution (that was plotted using 200-cell grids). However,
as noted in Table II, which summarizes the same as above quantitative errors’ comparison on the
water depth, the RKDG3 and RKDG4 required, respectively, more than three and nine times the
CPU cost of the RKDG2 model.
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Figure 3. Error evolution with respect to the number of computational cells.

Table I. CPU times and velocity errors generated, respectively, by the RKDG2, RKDG3,
and RKDG4 schemes for the transient Burger’s equation.

RKDG2 RKDG3 RKDG4

N Error (%) CPU (s) Error (%) CPU (s) Error (%) CPU (s)

13 5.1e−001 0.10 3.0e−001 0.13 2.0e−001 0.25
26 1.2e−001 0.14 8.1e−002 0.23 6.1e−002 0.37
52 3.1e−002 0.22 2.0e−002 0.31 1.5e−002 0.68
104 7.8e−003 0.52 5.2e−003 0.79 3.8e−003 1.16

4.2. Application of RKDG4 to supercritical and discontinuous flow benchmarks

So far, in spite of their large CPU time cost, higher than second-order RKDG models are not, in
principle, the superlative choice for dealing with realistic discontinuous flows, which explains the
pending research on designing their suitable high-order (differentiable) limiter functions. Although
knowing that, we focus in this subsection on displaying the RKDG4 model performance when
utilized to compute the full conservative form of the shallow water equations.

4.2.1. Steady supercritical flow in a prismatic channel. It is a rectangular prismatic reach 1000m
long and 10m wide in which the flow is supercritical at the inflow and outflow. In Figure 4(a),
the exact longitudinal profiles of water level, critical level, and bottom level are displayed. The
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Figure 4. A schematic view of the flow properties for the steady MacDonald test problems: (a) rectangular
prismatic channel of Section 4.2.1 and (b) trapezoidal prismatic channel of Section 4.1.2.

Figure 5. RKDG4 numerical results for the smooth subcritical flow test: (a) along the computational
domain and (b) compared with lower-order models on a magnified portion.

discharge is of 20m3/s, the value of the Manning roughness is 0.02 (SI units), and the steady
water depth followed

h(x)=
(
4

g

)1/3
{
1− 1

5
exp

[
−36

(
x

1000
− 1

2

)2]}
(22)

Contrary to the downstream boundary, two boundary conditions are enforced at the upstream
(a discharge of 20m3/s is imposed at the upstream boundary and the downstream depth is
fixed at 0.741599m throughout the simulation). Since the flow regime remains unchangeable,
N =13 computational cells are sufficient for the interval discretization and Figure 6 shows the
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Table II. CPU times and depth errors generated, respectively, by the RKDG2, RKDG3,
and RKDG4 schemes for the steady subcritical test.

RKDG2 RKDG3 RKDG4

N Error (%) CPU (s) Error (%) CPU (s) Error (%) CPU (s)

13 2.93 6 1.60 13 1.36 40
26 0.47 13 0.30 42 0.28 117
52 3.2e−002 42 1.5e−002 133 1.3e−002 412
104 1.2e−002 149 0.8e−002 513 0.5e−002 1685

Figure 6. Numerical solution of the supercritical flow test simulated with
the RKDG4 scheme versus the exact solution.

corresponding numerical depth and discharge profiles versus the analytical solution (200-cell
grids).

4.2.2. Hydraulic jump in a prismatic channel. This is a steady problem of a hydraulic jump
modelling in a 1000m long rectangular prismatic channel of width b=10m with a Manning’s
roughness coefficient n=0.02 and variable bed slope S0 derived from Equation (20) with the
following analytical solution

h(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
4

g

)1/3[
9

10
− 1

6
exp

(
− x

250

)]
, 0�x�500

(
4

g

)1/3
{
1+

3∑
i=1

ki exp

[
−20i

(
x

1000
− 1

2

)]

+1

2
exp

( x

1000
−1

)}
, 500<x�1000

(23)
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Figure 7. Flow properties of the steady MacDonald test problems of sections: (a) 4.2.2 and (b) 4.2.3.

Figure 8. Hydraulic jumps computerized by means of the RKDG4 model
and compared with the exact solution.

where k1=−0.348427, k2=0.552264, and k3=−0.555580. The bed level, water surface level, and
critical level longitudinal profiles are illustrated in Figure 7(a). The inflow discharge is 20m3/s. At
this equilibrium state, the flow is supercritical upstream, changes to subcritical halfway along the
channel via a hydraulic jump occurrence, and remains subcritical thereafter. Therefore, the water
depth (0.543853m) and the water discharge (20m3/s) must be prescribed for the upstream boundary
conditions. At the downstream end, we specify only one condition (a height of 1.334899m) as
the flow is subcritical and the water discharge is numerically derived [58]. The numerical results
using 40 computational cells are adequately reproduced compared with the analytical solution of
Figure 8.
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Table III. Analytical solution parameters for Section 4.2.3.

x∗
1 x∗

2 k0 k1 k2 k3 a b c

50<x�200 50 200 1.01826 0.0330684 −0.00366582 0.00216754 1 0.25 130
200<x�350 200 350 1.01031 0.032978 −0.00387227 0.00243084 1 0.23 280
350<x�500 350 500 0.987768 0.0308504 −0.00416726 0.00294851 0.98 0.2 430
500<x�650 500 650 0.977391 0.029882 −0.00435568 0.00329588 0.96 0.2 580

Figure 9. Flow variables profiles computed by means of the RKDG4 model
and weighted against the exact solution.

4.2.3. A regression of transcritical flows with shocks in a trapezoidal watercourse. This hydraulic
problem consists of a 650m long trapezoidal channel with a roughness coefficient of 0.03. The
channel width is b=5m with a lateral slope SL=5. For more understanding of this flow problem,
Figure 7(b) contains the bed level and flow properties. The bed slope is calculated from the
analytical solution of the depth according to the following equations completed in Table III

h(x)=0.75+0.1×exp(0.1x), x�50

h(x)=
3∑

i=0
ki

(
x−x∗

1

x∗
2 −x∗

1

)
×exp[−50(x−x∗

1 )]+a−b tanh[0.03(x−c)] otherwise
(24)

The flow is forced to be supercritical at the upstream and the downstream. Two boundary conditions
are specified at the upstream (Q=20m3/s and h=0.850m) and a free outlet at the downstream.

This example is characterized by a fast variation in the flow regime from supercritical to
subcritical generating a succession of stationary shocks and points of transcritical flow. Figure 9
contains the discharge and water depth plots simulated with 81 computational cells. RKDG4 leads
to a good approximation of the water stage. The steady discharge prediction is fair, but not ideal
as expected [56]. We conjecture that this is because of the high-order adaptive slope limiting
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procedure. It is also worth stressing that the liming procedure, due to the large number of flow
discontinuities, led to a huge CPU cost in the simulation of this problem (compared with all the
other problems investigated in this essay).

4.2.4. Transcritical flow, with shock, over a hump in a non-prismatic rectangular channel. This
is about a steady water flow over a hump in a converging–diverging channel. This kind of flow
problem has been largely reported [18, 49, 50, 56] and is characterized by a steady shock formation.
The conduit is 3m long with a smoothly varying bed and width giving the channel a symmetrical
form. They are defined as

z(x) =
{
0.1cos2(�(x−1.5)) if |x−1.5|�0.5

0 otherwise
(25)

b(x) =
{
1−0.1cos2(�(x−1.5)) if |x−1.5|�0.5

1 otherwise
(26)

Again the flow regime depends on the boundary conditions. Our test case here is that of a
transcritical flow with a stationary shock downstream of the hump and a critical point at the
throat. The flow is subcritical upstream, turns supercritical in the middle of the channel, and
then returns to subcritical downstream passing through a shock. The initial condition is h+z=
1m and Q=1.8796m3/s. Since the flow regime is subcritical at the inflow and the outflow, a
single boundary condition should be specified at the upstream and at the downstream. For the
upstream boundary condition we impose the water discharge (Q=1.8796m3/s) and the water
depth is calculated numerically. For the downstream boundary, a water depth of 1m is imposed
and the water discharge is taken into account by a numerical boundary condition treatment. An
analytical solution can be calculated for each point in the channel by solving a cubic equation
that derives from the conservation of water energy [5]. The scheme has been left to convergence
and the computerized steady-state profile of the flow variables (with 40 computational cells)
compared with the exact solution is shown in Figure 10, where the RKDG4 scheme spots reasonable
agreement.

4.2.5. Classical dam-break problem. This test case has become a classical benchmark considered
for comparing the performance of numerical schemes specially designed for discontinuous transient
flow. Although defined by the system of homogeneous shallow water equations (G=0), it is
widely considered as a standard test case for validation of schemes. Starting from the initial
conditions given by still water and two different water layers separated by a barrier, the theory
of characteristics supplies an exact evolution solution that can be used as a reference [60]. At
time T =0, the barrier is suddenly removed and the corresponding flow pattern consists of a bore
travelling downstream and a rarefaction wave travelling upstream. The frictionless channel is 10m
wide and 2000m length with a flat-bottomed surface. The water depth ratio is hd/hu=0.25, where
hu=20m is the upstream depth and hd =5m is the downstream depth. These conditions produce
a transcritical flow profile, which means that the flow is subcritical upstream and supercritical
downstream. The flow conditions are computed to time T =50s. Since the flow up to 50 s does not
reach the boundaries, transitive boundary conditions are applied for the upstream and downstream
borders. In the simulation, the space interval of the mesh is �x=20m and the RKDG4 results
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Figure 10. Steady-state profile of the RKDG4 numerics compared with the reference solution.

Figure 11. Depth and discharge numerical plots simulated at T =50s by the RKDG4 scheme.

are illustrated in Figure 11 along with the reference solution showing excellent agreement, where
good captures of the discontinuities evolution were handled by the advised scheme.

5. CONCLUSIONS

The shallow water equations not only serve as a set of governing equations for large-scale water
waves where the wave amplitude is quite small compared with the wavelength but also provide a
good mathematical model for nonlinear hyperbolic differential equations that may have solutions
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such as shock wave and expansion fan. Moreover, solving numerically the shallow water equations
is of practical importance for river hydraulics and coastal engineering.

The RKDG model is an evolving class of FE methods that, over the past few years, have dealt
with a wide range of problems of practical concern. Contrary to FV techniques, the DG method can
lend itself to high-order extensions without the involvement of data reconstructions. Furthermore,
this technique has the desirable skill of communicating with only the neighboring data regardless
of the accuracy order of the method and uses the interesting properties of well-designed FV shock
capturing methods.

To the best of our knowledge, implementation of RKDG techniques to simulate 1D open-channel
flows has seen a little formal attention that mostly combines the LLF flux and the HLL family of
Riemann solvers. Most recently, a practical implementation of the RKDG2 model gathered with the
Roe solver has been constructed and some recent work in applying RKDG models together with
the flooding and drying technique has been done for the 1D/2D shallow water model. However,
these recent approaches have been designed for second-order accuracy approximations.

In this work, we enabled high-order extensions of the RKDG2 model. The RKDG4 scheme,
combined with the Roe solver, was reformulated with high-order source term approximations
and an adaptive slope limiting approach. Lately, as a primary step, a comparison between the
RKDG4 and lower-order models was carried out indicating the merit of considering the proposed
scheme. Finally, the RKDG4 model was applied to simulate steady and transient shallow water
flow problems involving mostly discontinuous flow. The computational results were illustrated,
together with an available analytical solution, showing the effectiveness and the reliability of the
proposed scheme. In principle, only the 1D case is considered in this paper. More work is needed
to carry out the detailed design of a well-balanced RKDG (at least for RKDG2 to be later used
for practical interests) model over irregular bed topography and this is left for future research.
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